

Home Search Collections Journals About Contact us My IOPscience

The effect of pressure on vibrational modes in Li_3PO_4

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 461

(http://iopscience.iop.org/0953-8984/14/3/314)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.238 The article was downloaded on 17/05/2010 at 04:45

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 461-469

PII: S0953-8984(02)29165-1

The effect of pressure on vibrational modes in Li₃PO₄

Randy J Smith, Yongrong Shen and Kevin L Bray

Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA

Received 26 September 2001, in final form 20 November 2001 Published 21 December 2001 Online at stacks.iop.org/JPhysCM/14/461

Abstract

We have studied the effect of pressure on the stretching and bending modes of $(PO_4)^{3-}$ molecular groups in undoped Li₃PO₄ and $(MnO_4)^{3-}$ groups in Mn^{5+} -doped Li₃PO₄ using Raman spectroscopy and luminescence. The high-pressure Raman spectroscopy study confirmed an irreversible phase transition from the high-temperature phase to the low-temperature phase, observed in our previous high-pressure luminescence study (Riedener T, Shen Y R, Smith R J and Bray K L 2000 *Chem. Phys. Lett.* **321** 445) and further characterized the rate and irreversibility of the phase transition. We observed and analysed vibronic transitions occurring in the ¹E emission of Mn^{5+} in both phases. A stronger vibronic transition associated with the bending mode is interpreted in terms of an $E \otimes e$ Jahn–Teller coupling. Bulk and local compressibilities were predicted from variations of the energies of the $(PO_4)^{3-}$ and $(MnO_4)^{3-}$ stretching modes with pressure.

1. Introduction

For the past decade, great attention has been paid to materials activated with $3d^2$ transition metal ions (e.g., Cr^{4+} , Mn^{5+} , and Fe^{6+}) because of their applicability as tunable solid-state lasers in the near-infrared (NIR) range. There have appeared numerous studies of the spectroscopy [1–11], electron spin resonance [12–14], and high-pressure luminescence spectroscopy [15–19] of the $3d^2$ -activated materials.

The intensity and bandwidth of the vibronic luminescence of Cr^{4+} in host lattices are decisive factors that govern the tunability, wavelength, and efficiency of NIR lasers. Our recent high-pressure luminescence studies of Cr^{4+} in forsterite (Mg₂SiO₄) [17] and in yttrium silicate (Y₂SiO₅) [18] revealed that non-tetrahedral distortions significantly influence the electronic structure and the electron–vibrational coupling of $3d^2$ ions and, as a consequence, these distortions govern the luminescence properties of $3d^2$ -activated materials.

 Mn^{5+} is a useful diagnostic of the properties of $3d^2$ ions because of the fine spectral structure of its ${}^{1}E \leftrightarrow {}^{3}A_2$ transitions. This fine spectral structure permits Mn^{5+} to be used as a probe of local distortions and electron–vibrational coupling. We successfully used the high-pressure luminescence properties of a Mn^{5+} dopant as a probe of a phase transition of Li_3PO_4 [19].

Li₃PO₄ is well known to exist in a dimorphic form. Li₃PO₄ possesses a high-temperature phase (HTP) and a low-temperature phase (LTP) [20, 21]. The structure is orthorhombic for both phases and the space group is *Pnma* for the LTP and *Pmn*2₁ for the HTP. The cell volume in the HTP is ~1.4% larger than in the LTP. Li⁺ and P⁵⁺ are tetrahedrally coordinated by oxygen anions in both phases of Li₃PO₄. The P–O bond lengths are very similar in the two phases (averages: 1.546(7) Å in the LTP and 1.555(20) Å in the HTP) and the O–P–O angles deviate slightly from the regular tetrahedral value (109.5°), with an average deviation of ~0.7° in the LTP and of ~0.5° in the HTP [20,21]. Keffer *et al* [21] observed a temperature-induced LTP \rightarrow HTP phase transition at ~502 °C. In our previous study [19], we induced the reverse HTP \rightarrow LTP phase transition at pressures above ~120 kbar.

The purpose of our present work is to use high-pressure Raman and luminescence spectroscopy to systematically study the effect of pressure on the vibrational modes and the electron–vibrational coupling in undoped and Mn^{5+} -doped Li₃PO₄. Our objective is to correlate the variations of the vibrations with the luminescence properties of $3d^2$ ions through the electron–vibrational coupling. The dimorphic Li₃PO₄ system possesses two structures, a slightly distorted HTP structure and a more distorted LTP structure, with similar chemical features and provides a unique opportunity to gain a deeper understanding of local distortions and electron–vibrational coupling effects in $3d^2$ systems.

2. Experimental procedure

Undoped and 0.1% Mn⁵⁺-doped HTP Li₃PO₄ single crystals were provided by Professor Hans U Güdel at the University of Bern. Undoped LTP Li₃PO₄ powder was commercially available and was purchased from Aldrich.

High pressure was generated by a gasketed Merrill-Bassett diamond-anvil cell (DAC). The sample was placed in the DAC inside a hole (200 μ m in diameter) of an Inconel gasket. Pressure was determined by the standard ruby luminescence technique and with a linear shift (0.365 Å kbar⁻¹) of the ruby R₁ line [22]. A 4:1 methanol:ethanol mixture or a spectroscopic polydimethyl siloxane oil served as the pressure-transmitting medium in room temperature high-pressure Raman scattering experiments. In low-temperature high-pressure luminescence experiments, the 4:1 methanol:ethanol mixture only served as the pressure-transmitting medium because of its known hydrostatic pressure distribution at low temperatures [22] and each pressure distribution was always carried out at room temperature in order to maintain the hydrostatic pressure distribution when the DAC was cooled. The two pressure media used for the room temperature high-pressure Raman spectroscopy showed no significant difference—not only in the pressure dependence of the line positions and shapes of Raman lines but also in the transition pressure for Li₃PO₄ of interest in this study.

Raman scattering measurements were performed using a micro-Raman spectroscopy setup. The set-up consisted of an Ar⁺ laser (Coherent 52), a microscope (Nikon MM-40), a 0.55 m monochromator (Spex Triax 550), and a CCD detector (Princeton Instruments 1152EM/1). The 514.5 nm Ar⁺ laser line was employed as the excitation source. The laser line was reflected by a 514.5 nm holographic beam splitter into the microscope, and focused onto the sample in the DAC ($\sim 5 \mu m$ in laser beam size). The scattered light was first filtered by a 514.5 nm super-notch holographic filter and was focused onto the entrance slit (100 μm in slit width) of the monochromator.

NIR luminescence measurements were performed with a continuous-wave spectroscopy set-up. Luminescence was excited with an excitation wavelength of \sim 600 nm from a dye laser (Spectra-Physics 375B; rhodamine 590) pumped by a 7 W Ar⁺ laser multilines (Lexel 95), dispersed with a 1 m monochromator (Spex 1704/2), and detected with a Ge

Figure 1. Room temperature Raman spectra of bulk HTP Li₃PO₄ crystal (a) and LTP Li₃PO₄ powder (b) as well as Li₃PO₄ crystal (c) obtained by decompressing down to ambient pressure. All Raman spectra were normalized to their ν_1 -mode intensity. The ν' - and ν'' -labelled Raman peaks are the lattice modes. The ν_a - and ν_b -labelled Raman peaks are overtones of $\nu_2(360 \text{ cm}^{-1}) + \nu''(490 \text{ cm}^{-1})$ and $\nu''(421 \text{ cm}^{-1}) + \nu_4(626 \text{ cm}^{-1})$, respectively.

Table 1. Ambient-pressure vibrational modes (cm^{-1}) for $(PO_4)^{3-}$ and $(MnO_4)^{3-}$. Free-ion modes are taken from [23].

	$v_1(a_1)$ (cm ⁻¹)	$v_2(e)$ (cm ⁻¹)	$\nu_3(t_2)$ (cm ⁻¹)	$\nu_4(t_2)$ (cm ⁻¹)
$(PO_4)^{3-}$ (free)	938	420	1017	567
(PO ₄) ³⁻ (HTP)	950	360, 381	1022, 1032, 1061	602, 624
(PO ₄) ³⁻ (LTP)	942	352, 377	1022, 1063	600, 625
$(MnO_4)^{3-}$ (free)	810	324	838	349
(MnO ₄) ³⁻ (HTP)	800	333, 341	_	487, 538
(MnO ₄) ³⁻ (LTP)	800	313, 318	—	428, 490

detector (ADC 403UL) using a standard lock-in technique. Low temperature was achieved by mounting the DAC on a closed-cycle helium cryostat (APD Cryogenics).

3. Raman spectroscopy

Figure 1 shows ambient-pressure Raman spectra of HTP Li₃PO₄ crystal (figure 1(a)) and LTP Li₃PO₄ powder (figure 1(b)) at room temperature. The HTP and LTP Li₃PO₄ samples exhibited similar features in the Raman spectrum. The spectra consisted of four groups of vibrational modes (labelled by v_i , i = 1–4). The ambient-pressure energies of the v_i -modes in both phases are presented in table 1.

In an undistorted tetrahedron (T_d symmetry), the molecular vibrations are composed of two stretching modes ($\nu_1(a_1)$ and $\nu_3(t_2)$) and two bending modes ($\nu_2(e)$ and $\nu_4(t_2)$), all of

Figure 2. Representative room temperature Raman spectra of HTP Li_3PO_4 crystal at several pressures. All spectra were normalized to the most intense peak.

which are Raman active. The site symmetry of $(PO_4)^{3-}$ in the HTP and LTP Li₃PO₄ systems is slightly distorted from a regular tetrahedron to a formal C_s site symmetry [20, 21]. The tetrahedral vibrational modes will therefore split and we can formally expect three sub-bands (2a' + a'') from a threefold-degenerate T_d mode (ν_3 or ν_4) and two sub-bands (a' + a'') from a twofold-degenerate T_d mode (ν_2). In our present study, however, for convenience and because the distortions are slight, a tetrahedral approximation will be used to describe the observed Raman peaks.

From figures 1(a) and (b), we see that the stretching modes $(v_{1,3})$ are stronger than the bending modes $(v_{2,4})$. Moreover, the stretching mode (v_1) is dominant in intensity and appears 8 cm⁻¹ higher in energy in HTP Li₃PO₄ (950 cm⁻¹) than in LTP Li₃PO₄ (942 cm⁻¹).

For high-pressure Raman spectroscopy studies, we primarily focused on the stretching modes ($\nu_{1,3}$) because of their higher Raman intensity. Figure 2 shows representative room temperature Raman spectra of Li₃PO₄ under pressure up to 253 kbar. We began by pressurizing the HTP Li₃PO₄ up to ~120 kbar and found a monotonic blue-shift of the $\nu_{1,3}$ -modes with pressure. Upon further compression, a new Raman peak (labelled ν_1^*) appeared on the lower-energy side of the HTP ν_1 -mode and gradually gained in intensity. A simultaneous gradual decrease in the HTP ν_1 -mode intensity was also observed. As pressure was increased above ~225 kbar, the HTP ν_1 -mode disappeared completely.

Upon release of pressure, the ν_1^* -mode shifted to the red and remained observable in the fully released, ambient-pressure state. No HTP modes returned. A detailed ambient-pressure Raman spectrum of the depressed Li₃PO₄ crystal is shown in figure 1(c), and is identical to the Raman spectrum of the LTP Li₃PO₄ powder (figure 1(b)). We therefore conclude that pressure induces an irreversible phase transition from the HTP to the LTP as observed in our previous luminescence studies of Mn⁵⁺:Li₃PO₄ [19].

Repeated runs of the high-pressure Raman spectroscopy experiment indicated that the pressure-induced HTP \rightarrow LTP phase transition began at ~120 kbar and finished at ~230 kbar. The phase transition process is very slow and a transition rate of ~0.9% per kbar was determined

Figure 3. Pressure dependence of the stretching modes (ν_1 and ν_3) in Li₃PO₄ at room temperature. Solid lines represent linear least-squares fits of the data.

from the relative intensity of the HTP ν_1 - and LTP ν_1^* -modes. An additional experiment was intentionally designed to probe the irreversibility of the phase transition. In the experiment, we first pressurized HTP Li₃PO₄ up to ~178 kbar and found a ~50:50 HTP:LTP phase ratio. When the pressure was released to ambient pressure, we found that the ~50:50 HTP:LTP phase ratio remained.

Figure 3 presents the energies of the $v_{1,3}$ -modes as a function of pressure. We obtained shift rates of 0.37(1) cm⁻¹ kbar⁻¹ for the HTP v_1 -mode and 0.35(1) cm⁻¹ kbar⁻¹ for the LTP v_1 -mode. The v_3 -mode, in both phases, also showed a similar blue-shift with pressure.

4. Luminescence spectroscopy

 Mn^{5+} -doped Li₃PO₄ emits in the NIR range. Ambient-pressure 25 K luminescence spectra of Mn^{5+} are shown in figure 4(a) for HTP Mn^{5+} :Li₃PO₄ and in figure 4(b) for LTP Mn^{5+} :Li₃PO₄. Each of the spectra consisted of two strong sharp zero-phonon lines at high energy (8963 cm⁻¹ (E₁) and 8980 cm⁻¹ (E₂) in the HTP; 8966 cm⁻¹ (E₁) and 9006 cm⁻¹ (E₂) in the LTP) and weak vibronic bands at low energy. The luminescence is attributed to the ${}^{1}E \rightarrow {}^{3}A_{2}$ transition of the Mn^{5+} ion [9,19]. The temperature dependence of the $E_{1,2}$ line intensity revealed that the E_1-E_2 splitting (17 cm⁻¹ in the HTP and 40 cm⁻¹ in the LTP) arises in the emitting ${}^{1}E$ state due to a local non-tetrahedral site distortion.

The vibronic bands are attributed to vibronic transitions associated with the bending mode (ν_2) and the stretching mode (ν_1) of $(MnO_4)^{3-}$ in Li₃PO₄ [9]. The ambient-pressure energies of the $(MnO_4)^{3-}$ $\nu_{1,2}$ -modes are presented in table 1. For comparison, the data for four vibrations of the free $(MnO_4)^{3-}$ ion are also included in table 1. We note from figure 4 that the vibronic transitions in LTP Mn⁵⁺:Li₃PO₄ are stronger than those in HTP Mn⁵⁺:Li₃PO₄ and that the vibronic transition associated with the bending mode is stronger than that associated with the stretching mode in both phases.

Figure 4. Ambient- and high-pressure 25 K luminescence spectra of Mn^{5+} in HTP Li₃PO₄ (left) and HTP Li₃PO₄ (right) upon excitation at $\lambda_{ex} = \sim 600$ nm. All vibronic spectra were normalized to the E₁ line intensity and scaled relative to the E₁ line energy.

Upon application of pressure, we observed a red-shift in the barycentre energy of the ¹E state and an increase in the splitting of the ¹E state (figure 5(a)). A discussion of the effect of pressure on the barycentre energy and the splitting of the ¹E state was given in our previous study [19]. Representative vibronic luminescence spectra at several pressures are shown in figure 4 relative to the energy of the E₁ line. An obvious increase in intensity of the vibronic ν_2 -transition with pressure was observed in both phases. The energies of the bending mode ν_2 and stretching mode ν_1 , as a function of pressure, were derived from the vibronic luminescence spectra (figure 4) and are shown in figures 5(b) and (c). In both phases, the stretching mode ν_1 exhibited a linear blue-shift with pressure (0.39(2) cm⁻¹ kbar⁻¹ in the LTP and 0.54(3) cm⁻¹ kbar⁻¹ in the HTP) and the bending mode ν_2 exhibited a weaker sublinear blue-shift with pressure (approximately 0.19 cm⁻¹ kbar⁻¹ in the LTP and 0.22 cm⁻¹ kbar⁻¹ in the HTP).

5. Electron-vibrational coupling

In our present $Mn^{5+}:Li_3PO_4$ systems, the presence of the vibronic ν_2 -transition in the ¹E luminescence is indicative of a dynamic Jahn–Teller effect [24]. The emitting ¹E state of Mn^{5+} can be coupled to the bending mode $\nu_2(e)$ through an $E \otimes e$ Jahn–Teller coupling. The high intensity of the vibronic ν_2 -transition relative to the vibronic ν_1 -transition is further evidence of the presence of the $E \otimes e$ Jahn–Teller coupling in the ¹E state of Mn^{5+} .

Such a Jahn–Teller effect can be expected to enhance mixing between the ¹E state and the ³E orbital component of the highly excited ³T₂ state through spin–orbit coupling. In a more distorted $(MnO_4)^{3-}$ system, we can expect a stronger vibronic ν_2 -transition because of the smaller energetic separation between the ¹E state and the lowest orbital component of the excited ³T₂ state. This smaller separation increases the E \otimes e Jahn–Teller effect

Figure 5. Energies of the $E_{1,2}$ zero-phonon lines and the bending and stretching modes ($\nu_{1,2}$) in HTP and LTP Mn⁵⁺:Li₃PO₄, as a function of pressure. The solid curves are provided only as a guide to the eye.

through the spin-orbit coupling. Recent NIR luminescence studies of Mn^{5+} demonstrated an increased vibronic ν_2 -transition intensity as the distortion of the host lattice increased from slight (Li₃BO₄, B = P, As, and V), to intermediate (apatite, $A_5(BO_4)_3$ Cl; A = Ca, Sr, and Ba; B = P and V), and to strong (spodiosite, A_2BO_4 Cl; A = Ca, Sr, and Ba; B = P and V) [9]. The larger ¹E splitting of Mn⁵⁺ in the LTP indicates that the (MnO₄)³⁻ tetrahedron is more distorted in the LTP than in the HTP. We therefore expect a stronger vibronic ν_2 -transition in the LTP.

In our previous high-pressure luminescence study [19], we observed an increased ¹E splitting and a decreased ¹E lifetime with pressure in both phases. These observations correspond to a pressure-induced increase in local distortions of $(MnO_4)^{3-}$. The pressure-induced increase in the intensity of the vibronic v_2 -transition is due to the increased local distortions that act to enhance the E \otimes e Jahn–Teller coupling through enhanced spin–orbit mixing of the ¹E state and the lowest orbital component (³E) of the ³T₂ state.

6. Compressibility

The energy (E_{ν_i}) of a vibrational mode (ν_i) as a function of the cell volume of a crystal (V) can be described by [25,26]

$$\gamma_{i} = -\frac{d \ln E_{\nu_{i}}}{d \ln V} = \chi^{-1} \frac{d E_{\nu_{i}}}{E_{\nu_{i}} dP}$$
(1)

where γ_i is the mode Grüneisen parameter and χ is the compressibility of the crystal. This links the compressibility of the host material and the pressure dependence of the vibrational energy through the mode Grüneisen parameter.

A mode Grüneisen parameter (γ_i) depends primarily on the character of a vibrational mode. Different vibrational modes (ν_i) have their own characteristic values for γ_i . We can reasonably assume that γ_1 (HTP) $\approx \gamma_1$ (LTP) for the (PO₄)³⁻ ν_1 -mode in the HTP and LTP Li₃PO₄. This is because the ν_1 -mode is a totally symmetric internal stretching mode that describes a quasiisotropic vibration and, furthermore, because the HTP and LTP Li₃PO₄ are dimorphic and the

Table 2. Ambient-pressure energies (cm⁻¹), absolute shifts (cm⁻¹ kbar⁻¹), and relative shifts (kbar⁻¹) of the stretching modes ν_1 for (PO₄)³⁻ and (MnO₄)³⁻ in both LTP and HTP phases.

	$v_1(0)$ (cm ⁻¹)	dv_1/dP (cm ⁻¹ kbar ⁻¹)	$[1/v_1(0)](dv_1/dP)$ $(10^{-4} \text{ kbar}^{-1})$
$(PO_4)^{3-}$ (HTP)	950	0.37(1)	3.89
$(PO_4)^{3-}$ (LTP)	942	0.35(1)	3.72
$(MnO_4)^{3-}$ (HTP)	800	0.39(2)	4.88
$(MnO_4)^{3-}$ (LTP)	800	0.54(3)	6.75

P–O bond lengths of the (PO₄)^{3–} group are very similar (on average, 1.546(7) Å in the LTP and 1.555(20) Å in the HTP) [21]. This assumption also holds reasonably well for the (MnO₄)^{3–} ν_1 -mode in both phases.

The high-pressure Raman results for the $(PO_4)^{3-} \nu_1$ -mode energy (figure 3 and table 2) and the high-pressure luminescence results for the $(MnO_4)^{3-} \nu_1$ -mode energy (figures 5(b), (c) and table 2) provide an opportunity to predict bulk and local compressibilities using equation (1). We predict similar bulk compressibilities in the two phases ($\chi_B(HTP) \approx \chi_B(LTP)$) according to $\gamma_1(HTP) \approx \gamma_1(LTP)$ for the $(PO_4)^{3-}$. We also predicted a larger local compressibility (χ_L) of the $(MnO_4)^{3-}$ in the LTP relative to the HTP ($\chi_L(LTP) > \chi_L(HTP)$) according to $\gamma_1(HTP) \approx \gamma_1(LTP)$ for the $(MnO_4)^{3-}$.

In our previous high-pressure study [19], we observed a pressure-induced decrease in the Racah parameter *B* of Mn⁵⁺ in both phases of Li₃PO₄ (-1.09×10^{-2} cm⁻¹ kbar⁻¹ in the LTP and -7.27×10^{-3} in the HTP). The Racah parameter *B* is a measure of the coulombic interactions between the 3d electrons of a transition metal ion and is reduced through the nephelauxetic effect when the ion is incorporated into a host lattice. Since the primary effect of hydrostatic pressure yields symmetric bond compression, the nephelauxetic effect increases with increasing pressure and *B* decreases with increasing pressure. A larger reduction in *B* corresponds to a larger compressibility. This supports our present conclusion that χ_{L} (LTP) > χ_{L} (HTP).

7. Conclusions

High-pressure Raman and luminescence spectroscopy studies of undoped and Mn^{5+} -doped Li_3PO_4 have been completed to gain insight into the effect of pressure on bulk and local vibrations and the influence of the vibrations on the vibronic luminescence transitions of $3d^2$ ions. An increased intensity of the vibronic transition associated with the bending mode with increasing pressure was observed and attributed to increased $E \otimes e$ Jahn–Teller coupling. Our present high-pressure results indicate that such Jahn–Teller effects occur widely in vibronic transitions of $3d^2$ systems and exert a strong influence on the optical properties of $3d^2$ ions.

Acknowledgments

We gratefully acknowledge financial support from the US National Science Foundation through grants DMR-9629990 and DMR-0107802, and also from the Donors of the Petroleum Research Fund, administered by the American Chemistry Society. We thank Professor Hans U Güdel for kindly providing Mn^{5+} -doped HTP Li₃PO₄ single crystals and Dr Toni Riedener for his initial high-pressure luminescence measurements.

References

- [1] Wu X, Yuan H, Yen W M and Aitken B G 1995 J. Lumin. 66+67 285
- [2] Egorysheva A V, Volkov V V, Coya C and Zaldo C 1998 Phys. Status Solidi b 207 283
- [3] Calistru A M, Demos S G and Alfano R R 1997 Phys. Rev. Lett. 78 374
- [4] Scott M A, Henderson B, Gallagher H G and Han T P J 1997 J. Phys.: Condens. Matter 9 9893
- [5] Deghoul F, Chermette H, Rogemond F, Moncorgé R, Stückl C and Daul C 1999 Phys. Rev. B 60 2404
- Kück S, Petermann K, Pohlmann U and Huber G 1995 *Phys. Rev.* B 51 17 323
 Kück S, Petermann K, Pohlmann U and Huber G 1996 *J. Lumin.* 68 1
- [7] Riley M J, Krausz E R, Manson N B and Henderson B 1999 Phys. Rev. B 59 1850
- [8] Hazenkamp M F, Güdel H U, Atanasov M, Kesper U and Reinen D 1996 Phys. Rev. B 53 2367
- [9] Oetliker U, Herren M, Güdel H U, Kesper U, Albrecht C and Reinen D 1994 J. Chem. Phys. 100 8656
- [10] Okhrimchuk A G and Shestakov A V 2000 Phys. Rev. B 61 988
- [11] Brunold T, Hauser A and Güdel H U 1994 J. Lumin. 59 321
- [12] Hoffman K R, Casas-Gonzalez J, Jacobsen S M and Yen W M 1991 Phys. Rev. B 44 12 589
- [13] Buijsse B, Schmidt J, Chan I Y and Single D J 1995 Phys. Rev. B 51 6215
- [14] Reinen D, Rauw W, Kesper U, Atanasov M, Güdel H U, Hazenkamp M F and Oetliker U 1997 J. Alloys Compounds 246 193
- [15] Hömmerich U, Eilers H, Yen W M, Jia W and Wang Y 1994 Opt. Commun. 106 218
- [16] Shen Y R, Hömmerich U and Bray K L 1997 Phys. Rev. B 56 R473
- [17] Shen Y R and Bray K L 2000 Phys. Rev. Lett. 84 3990
- [18] Shen Y R, Riedener T and Bray K L 2000 Phys. Rev. B 61 9277
- [19] Riedener T, Shen Y R, Smith R J and Bray K L 2000 Chem. Phys. Lett. 321 445
- [20] Zemann V J 1960 Acta Crystallogr. 13 863
- [21] Keffer C, Mighell A, Mauer F, Swanson H and Block S 1967 Inorg. Chem. 6 119
- [22] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
- [23] Gonzalez-Vilchez F and Griffith W P 1972 J. Chem. Soc. Dalton Trans. 1416
- [24] Ballhausen C 1988 Vibronic Processes in Inorganic Chemistry (NATO ASI Series, vol 288) ed C D Flint (Dordrecht: Kluwer) p 53
- [25] Sherman W F and Wilkinson G R 1980 Advances in Infrared and Raman Spectroscopy vol 6, ed R J H Clark and R E Hesler (London: Heyden) pp 158–336
- [26] Ferraro J R 1988 Vibrational Spectroscopy at High External Pressures (New York: Academic)